Google Drive & Pathway RAG Integration Implementation Plan
Generated: 2025-01-12 UTC
Updated: 2025-08-12 UTC - Added comprehensive RAG evaluation framework and Pathway tuning guide
Purpose: Complete implementation plan for Google Drive mounting with Pathway RAG indexing, quality evaluation, and performance tuning
Status: Planning Phase (with Evaluation & Tuning Framework)
Executive Summary
This document outlines the implementation plan for integrating Google Drive with Sasha Studio using a dual approach:
- rclone for actual file system mounting (making files accessible to Claude CLI)
- Pathway for real-time RAG indexing and semantic search
The implementation starts with a simple Google Drive prototype and scales to support multiple cloud storage providers with advanced RAG capabilities.
Architecture Overview
Current State
- Sasha Studio has a "Cloud Storage Integration" UI in Settings (currently demo mode)
- Docker container runs with basic file system access
- Claude CLI works with local workspace files
- No cloud storage connectivity
Target Architecture
Sasha Studio Container
├── Express Server (Port 3005)
│ ├── OAuth Management
│ ├── Cloud Storage API
│ └── RAG Query Endpoints
├── rclone Service
│ ├── Google Drive Mount
│ ├── SharePoint Mount (future)
│ └── S3 Mount (future)
├── Pathway RAG Service (Port 8000)
│ ├── Real-time Indexing
│ ├── Vector Store
│ └── Semantic Search API
└── Mounted Volumes
├── /app/workspaces/local
├── /app/workspaces/google-drive
└── /app/workspaces/[other-clouds]
Phase 1: Basic Google Drive Integration
1.1 OAuth2 Implementation
Goal: Enable users to connect their Google Drive account
Components:
- Google Cloud Console project setup
- OAuth 2.0 credentials configuration
- Token storage and refresh mechanism
API Endpoints:
POST /api/cloud/google/auth // Initiate OAuth flow
GET /api/cloud/google/callback // Handle OAuth callback
POST /api/cloud/google/refresh // Refresh access token
DELETE /api/cloud/google/disconnect // Revoke access
1.2 Folder Selection UI
Goal: Let users choose which folders to mount
Features:
- Tree view of Google Drive structure
- Checkbox selection for folders
- Mount point customization
- Folder search/filter
UI Location: Settings > Tools > Shared Drives > Google Drive
1.3 rclone Mounting
Goal: Mount selected folders as local file system
Implementation:
# Mount configuration
rclone mount gdrive:Marketing /app/workspaces/google-drive/marketing \
--daemon \
--allow-other \
--vfs-cache-mode writes \
--vfs-cache-max-size 5G
Benefits:
- Files accessible to Claude CLI immediately
- Standard file operations work normally
- On-demand downloading (not full sync)
Phase 2: Basic Pathway RAG Integration
2.1 Document Monitoring
Goal: Index mounted Google Drive files
Pathway Configuration:
sources:
- !pw.io.fs.read
path: /app/workspaces/google-drive
format: binary
mode: streaming
refresh_interval: 30
2.2 Simple RAG Pipeline
Goal: Enable semantic search across Google Drive
Features:
- Automatic document parsing (PDF, DOCX, TXT, MD)
- Basic embeddings with OpenAI
- In-memory vector index
- Simple keyword + semantic search
API Endpoints:
POST /api/rag/search // Search across all content
GET /api/rag/stats // Index statistics
POST /api/rag/reindex // Force reindexing
Phase 3: UI Integration
3.1 Transform Demo to Active Mode
Current: Demo placeholder in ToolsSettings.jsx
Target: Functional Google Drive connector
3.2 Connection Status Dashboard
Connected Services:
┌─────────────────────────────────┐
│ 🟢 Google Drive │
│ user@example.com │
│ 3 folders mounted │
│ 1,247 files indexed │
│ Last sync: 2 seconds ago │
└─────────────────────────────────┘
3.3 File Browser Enhancement
Show cloud folders with special icons:
- for Google Drive folders
- for SharePoint (future)
- 🪣 for S3 buckets (future)
Pathway's Off-the-Shelf Integration Capabilities
Data Source Connectors (Available Now)
1. File System & Cloud Storage
# Local file system
pw.io.fs.read(path="/data", format="csv", mode="streaming")
# AWS S3
pw.io.s3.read(
bucket="my-bucket",
region="us-east-1",
access_key="xxx",
secret_key="xxx",
format="json"
)
# MinIO (S3-compatible)
pw.io.minio.read(
endpoint="minio.example.com:9000",
bucket="documents",
access_key="xxx",
secret_key="xxx"
)
# Google Drive (via mounted filesystem or API)
pw.io.gdrive.read(
folder_id="xxx",
credentials_file="service-account.json"
)
# SharePoint (with Scale/Enterprise license)
pw.xpacks.connectors.sharepoint.read(
url="https://company.sharepoint.com",
tenant="xxx",
client_id="xxx",
cert_path="cert.pem"
)
2. Databases
# PostgreSQL
pw.io.postgres.read(
host="localhost",
database="mydb",
query="SELECT * FROM documents"
)
# MySQL
pw.io.mysql.read(
host="localhost",
database="mydb",
table="documents"
)
# MongoDB
pw.io.mongodb.read(
connection_string="mongodb://localhost:27017",
database="mydb",
collection="documents"
)
# SQLite
pw.io.sqlite.read(
path="database.db",
query="SELECT * FROM documents"
)
# Elasticsearch
pw.io.elasticsearch.read(
hosts=["localhost:9200"],
index="documents"
)
3. Streaming Platforms
# Apache Kafka
pw.io.kafka.read(
servers=["localhost:9092"],
topic="document-updates",
format="json"
)
# Apache Pulsar
pw.io.pulsar.read(
service_url="pulsar://localhost:6650",
topic="persistent://public/default/documents"
)
# RabbitMQ
pw.io.rabbitmq.read(
host="localhost",
queue="documents",
format="json"
)
# Redis Streams
pw.io.redis.read(
host="localhost",
stream="documents:stream"
)
# MQTT
pw.io.mqtt.read(
broker="mqtt.broker.com",
topic="sensors/+/data"
)
4. APIs & Web Sources
# REST APIs
pw.io.http.read(
url="https://api.example.com/documents",
method="GET",
headers={"Authorization": "Bearer xxx"},
interval=60 # Poll every 60 seconds
)
# GraphQL
pw.io.graphql.read(
endpoint="https://api.example.com/graphql",
query="""
query { documents { id title content } }
""",
interval=30
)
# WebSocket
pw.io.websocket.read(
url="wss://stream.example.com/documents",
format="json"
)
# RSS/Atom Feeds
pw.io.rss.read(
url="https://example.com/feed.xml",
interval=300
)
5. Data Lakes & Warehouses
# Delta Lake
pw.io.deltalake.read(
table_path="s3://bucket/delta-table",
version=None # Latest version
)
# Apache Iceberg
pw.io.iceberg.read(
table="catalog.database.table",
warehouse="s3://bucket/warehouse"
)
# Snowflake
pw.io.snowflake.read(
account="xxx",
warehouse="COMPUTE_WH",
database="MYDB",
schema="PUBLIC",
table="DOCUMENTS"
)
# BigQuery
pw.io.bigquery.read(
project="my-project",
dataset="my_dataset",
table="documents"
)
# Databricks
pw.io.databricks.read(
server_hostname="xxx.databricks.com",
http_path="/sql/1.0/warehouses/xxx",
catalog="main",
schema="default",
table="documents"
)
6. Collaboration Tools
# Slack
pw.io.slack.read(
token="xoxb-xxx",
channel="general",
history_limit=1000
)
# Microsoft Teams
pw.io.teams.read(
tenant_id="xxx",
client_id="xxx",
client_secret="xxx",
team_id="xxx",
channel_id="xxx"
)
# Confluence
pw.io.confluence.read(
url="https://company.atlassian.net",
username="xxx",
api_token="xxx",
space="DOCS"
)
# Notion
pw.io.notion.read(
token="secret_xxx",
database_id="xxx"
)
# Discord
pw.io.discord.read(
token="xxx",
guild_id="xxx",
channel_id="xxx"
)
7. CRM & Business Systems
# Salesforce
pw.io.salesforce.read(
instance_url="https://xxx.salesforce.com",
username="xxx",
password="xxx",
security_token="xxx",
object="Account"
)
# HubSpot
pw.io.hubspot.read(
api_key="xxx",
object_type="contacts"
)
# Zendesk
pw.io.zendesk.read(
subdomain="company",
email="xxx",
token="xxx",
endpoint="tickets"
)
# Jira
pw.io.jira.read(
url="https://company.atlassian.net",
username="xxx",
api_token="xxx",
jql="project = PROJ"
)
8. Airbyte Integration (350+ connectors)
# Access ANY Airbyte connector
pw.io.airbyte.read(
connector="source-google-sheets",
config={
"spreadsheet_id": "xxx",
"credentials": {
"auth_type": "Service",
"service_account_info": "xxx"
}
}
)
# Examples of Airbyte sources:
# - Google Analytics
# - Facebook Ads
# - Stripe
# - Shopify
# - LinkedIn
# - Twitter
# - Instagram
# - YouTube Analytics
# - And 350+ more
Output Connectors (Write Capabilities)
# Write to various destinations
pw.io.csv.write(table, "output.csv")
pw.io.json.write(table, "output.json")
pw.io.parquet.write(table, "output.parquet")
# Database writes
pw.io.postgres.write(table, connection_params, table_name="results")
pw.io.elasticsearch.write(table, hosts=["localhost:9200"], index="results")
# Stream writes
pw.io.kafka.write(table, servers=["localhost:9092"], topic="results")
# API writes
pw.io.http.write(
table,
url="https://api.example.com/webhook",
method="POST",
headers={"Content-Type": "application/json"}
)
Future Extensions: Multi-Cloud Support
Tier 1: Priority Integrations (Native Pathway Support)
- SharePoint - Built-in connector (Scale license required)
- AWS S3 - Native support with
pw.io.s3 - Google Drive - Via API or mounted filesystem
- PostgreSQL/MySQL - Direct database connection
Tier 2: Via Airbyte Connectors
- OneDrive
- Dropbox
- Box
- Google Cloud Storage
- Azure Blob Storage
- 350+ additional sources
🔮 Advanced Pathway Features (Future)
Near-Term Enhancements
1. Hybrid Search (BM25 + Semantic)
# Combine keyword and semantic search
results = pathway.search.hybrid(
query="quarterly revenue projections",
bm25_weight=0.3,
semantic_weight=0.7
)
Benefit: Better accuracy for technical documents
2. Multi-Modal RAG
- Extract and index images from documents
- OCR for scanned PDFs
- Table extraction and understanding
- Chart/graph interpretation
- Audio transcription support
- Video frame analysis
Use Case: Financial reports with charts, architecture diagrams, recorded meetings
3. Incremental Updates
# Only process changed files
pathway.index.incremental_update(
modified_since=last_sync_time
)
Benefit: Efficient for large document sets
4. LLM Integrations (Off-the-shelf)
# OpenAI
llm = pw.xpacks.llm.OpenAIChat(
model="gpt-4",
api_key=api_key
)
# Anthropic Claude
llm = pw.xpacks.llm.AnthropicChat(
model="claude-3-opus",
api_key=api_key
)
# Google Gemini
llm = pw.xpacks.llm.GeminiChat(
model="gemini-pro",
api_key=api_key
)
# Local Models (Ollama)
llm = pw.xpacks.llm.OllamaChat(
model="llama2",
host="localhost:11434"
)
# HuggingFace
llm = pw.xpacks.llm.HuggingFaceChat(
model="meta-llama/Llama-2-70b-chat-hf",
api_key=api_key
)
# Azure OpenAI
llm = pw.xpacks.llm.AzureOpenAIChat(
deployment="gpt-4",
api_base="https://xxx.openai.azure.com",
api_key=api_key
)
Medium-Term Features
5. Advanced Document Processing
# Document parsers (all included)
parsers = {
"pdf": pw.xpacks.llm.parsers.PDFParser(),
"docx": pw.xpacks.llm.parsers.DocxParser(),
"pptx": pw.xpacks.llm.parsers.PptxParser(),
"xlsx": pw.xpacks.llm.parsers.ExcelParser(),
"html": pw.xpacks.llm.parsers.HTMLParser(),
"markdown": pw.xpacks.llm.parsers.MarkdownParser(),
"csv": pw.xpacks.llm.parsers.CSVParser(),
"json": pw.xpacks.llm.parsers.JSONParser(),
"xml": pw.xpacks.llm.parsers.XMLParser(),
"email": pw.xpacks.llm.parsers.EmailParser(),
"audio": pw.xpacks.llm.parsers.AudioParser(), # Transcription
"video": pw.xpacks.llm.parsers.VideoParser(), # Frame extraction
}
6. Embedding Models (Multiple Options)
# OpenAI Embeddings
embedder = pw.xpacks.llm.OpenAIEmbeddings(
model="text-embedding-3-large"
)
# Sentence Transformers (local)
embedder = pw.xpacks.llm.SentenceTransformerEmbeddings(
model="all-MiniLM-L6-v2"
)
# Cohere Embeddings
embedder = pw.xpacks.llm.CohereEmbeddings(
model="embed-english-v3.0"
)
# Custom embeddings
embedder = pw.xpacks.llm.CustomEmbeddings(
embed_fn=my_custom_embed_function
)
7. Vector Indices (Built-in Options)
# Default (USearc - very fast)
index = pw.xpacks.llm.VectorIndex(
embedder=embedder,
index_type="usearch"
)
# Hybrid search (BM25 + Vector)
index = pw.xpacks.llm.HybridIndex(
embedder=embedder,
bm25_index=True,
vector_index=True
)
# Hierarchical index
index = pw.xpacks.llm.HierarchicalIndex(
embedder=embedder,
levels=3
)
Long-Term Vision
8. Pathway Agents & Tools
# Create agents with tools
tools = [
pw.xpacks.llm.tools.GoogleSearch(),
pw.xpacks.llm.tools.Calculator(),
pw.xpacks.llm.tools.PythonREPL(),
pw.xpacks.llm.tools.SQLDatabase(connection),
pw.xpacks.llm.tools.FileSystem(root="/data"),
pw.xpacks.llm.tools.WebBrowser(),
]
agent = pw.xpacks.llm.Agent(
llm=llm,
tools=tools,
memory=pw.xpacks.llm.ConversationMemory()
)
9. Monitoring & Observability
# Built-in monitoring
pw.monitoring.enable(
prometheus_port=9090,
log_level="INFO"
)
# Trace queries
pw.debug.trace_computation(
query="complex RAG pipeline",
visualize=True
)
# Performance profiling
pw.profile.analyze(
pipeline=my_pipeline,
sample_data=test_data
)
10. Data Transformation Capabilities
# SQL on streaming data
result = pw.sql("""
SELECT
document_type,
COUNT(*) as count,
AVG(processing_time) as avg_time
FROM documents
GROUP BY document_type
WINDOW TUMBLING (SIZE 1 HOUR)
""")
# Machine Learning pipelines
from pathway.sklearn import StandardScaler, KMeans
scaled = StandardScaler().fit_transform(features)
clusters = KMeans(n_clusters=5).fit_predict(scaled)
# Time series analysis
from pathway.ts import rolling_mean, detect_anomalies
smoothed = rolling_mean(data, window="1h")
anomalies = detect_anomalies(data, method="isolation_forest")
Pathway-Specific Benefits
Why Pathway Over Traditional Solutions
| Feature | Pathway | Traditional RAG | Benefit |
|---|---|---|---|
| Data Freshness | Real-time updates | Batch ETL | Always current |
| Connectors | 350+ via Airbyte | Limited | Connect anything |
| Processing | Streaming + Batch | Usually batch | Unified approach |
| Scaling | Automatic | Manual | Lower ops cost |
| Cost | Single system | Multiple tools | Reduced complexity |
| LLM Support | All major providers | Usually one | Flexibility |
| Deployment | Docker ready | Complex setup | Fast time to value |
Pathway Licensing Options
Open Source (Free)
- Core streaming engine
- Basic connectors
- Community support
- Perfect for prototypes
Scale License
- SharePoint connector
- Priority support
- Advanced monitoring
- Production ready
Enterprise License
- All connectors
- Distributed processing
- SLA guarantees
- Custom development
Pathway Instance Tuning Guide
Core Configuration Parameters
1. Streaming Engine Configuration
# Pathway streaming engine tuning
import pathway as pw
config = pw.Config(
# Processing parameters
max_batch_size=1000, # Documents per batch
batch_timeout_ms=100, # Max wait time for batch
parallelism=8, # Number of parallel workers
# Memory management
memory_limit_gb=16, # Total memory allocation
cache_size_gb=4, # Cache for frequently accessed data
buffer_size_mb=256, # Stream buffer size
# Persistence
persistence_mode="async", # async, sync, or disabled
checkpoint_interval_sec=60, # Checkpoint frequency
state_backend="rocksdb", # rocksdb or memory
# Network
grpc_max_message_size=100_000_000, # 100MB
http_timeout_sec=30,
retry_policy={
"max_attempts": 3,
"backoff_ms": 1000
}
)
# Apply configuration
pw.set_global_config(config)
2. Index Optimization Parameters
# Vector index tuning for different scenarios
class PathwayIndexConfig:
@staticmethod
def high_accuracy_config():
"""Optimize for search quality"""
return {
"index_type": "usearch",
"metric": "cosine",
"connectivity": 32, # Higher = better quality, more memory
"expansion_add": 128, # Higher = better quality, slower indexing
"expansion_search": 256, # Higher = better quality, slower search
"quantization": None, # No quantization for best quality
}
@staticmethod
def balanced_config():
"""Balance between quality and performance"""
return {
"index_type": "usearch",
"metric": "cosine",
"connectivity": 16,
"expansion_add": 64,
"expansion_search": 128,
"quantization": "scalar", # Moderate compression
}
@staticmethod
def high_performance_config():
"""Optimize for speed and scale"""
return {
"index_type": "usearch",
"metric": "ip", # Inner product (faster)
"connectivity": 8,
"expansion_add": 32,
"expansion_search": 64,
"quantization": "binary", # Maximum compression
}
Document Processing Tuning
1. Chunking Strategy Optimization
# Adaptive chunking based on document type
class AdaptiveChunker:
def __init__(self):
self.configs = {
"technical_docs": {
"chunk_size": 512,
"chunk_overlap": 128,
"split_method": "recursive",
"separators": ["\n\n", "\n", ". ", " "]
},
"legal_docs": {
"chunk_size": 1024,
"chunk_overlap": 200,
"split_method": "semantic",
"preserve_sections": True
},
"conversational": {
"chunk_size": 256,
"chunk_overlap": 50,
"split_method": "sentence",
"min_chunk_size": 100
},
"code": {
"chunk_size": 1500,
"chunk_overlap": 300,
"split_method": "ast_aware", # Syntax tree aware
"preserve_functions": True
}
}
def get_config(self, doc_type):
return self.configs.get(doc_type, self.configs["technical_docs"])
# Apply adaptive chunking in Pathway
def create_tuned_pipeline(doc_type="technical_docs"):
chunker_config = AdaptiveChunker().get_config(doc_type)
return pw.io.fs.read(
path="/data",
format="binary",
mode="streaming"
).apply(
pw.udf(
chunk_document,
chunk_size=chunker_config["chunk_size"],
overlap=chunker_config["chunk_overlap"]
)
)
2. Embedding Model Tuning
# Optimize embedding generation
class EmbeddingOptimizer:
def __init__(self, use_case="general"):
self.configs = {
"high_quality": {
"model": "text-embedding-3-large",
"dimensions": 3072,
"batch_size": 10,
"normalize": True,
"instruction_prefix": "Represent this document for retrieval: "
},
"balanced": {
"model": "text-embedding-3-small",
"dimensions": 1536,
"batch_size": 50,
"normalize": True,
"instruction_prefix": ""
},
"fast": {
"model": "text-embedding-3-small",
"dimensions": 512, # Reduced dimensions
"batch_size": 100,
"normalize": True,
"use_cache": True
},
"multilingual": {
"model": "multilingual-e5-large",
"dimensions": 1024,
"batch_size": 25,
"normalize": True,
"instruction_prefix": "query: "
}
}
self.config = self.configs[use_case]
def create_embedder(self):
return pw.xpacks.llm.OpenAIEmbeddings(
model=self.config["model"],
dimensions=self.config["dimensions"],
batch_size=self.config["batch_size"]
)
Performance Optimization Strategies
1. Caching Layer Configuration
# Multi-level caching for Pathway
class PathwayCacheConfig:
def __init__(self):
self.cache_layers = {
"embedding_cache": {
"type": "lru",
"max_size": 10000,
"ttl_seconds": 3600,
"similarity_threshold": 0.99 # Cache near-duplicates
},
"query_cache": {
"type": "redis",
"host": "localhost",
"port": 6379,
"max_size_gb": 5,
"ttl_seconds": 1800
},
"document_cache": {
"type": "memory",
"max_size_mb": 1024,
"eviction_policy": "lfu" # Least frequently used
}
}
def apply_to_pipeline(self, pipeline):
"""Apply caching to Pathway pipeline"""
return pipeline.with_cache(
embedding_cache=self.cache_layers["embedding_cache"],
query_cache=self.cache_layers["query_cache"],
document_cache=self.cache_layers["document_cache"]
)
2. Resource Allocation Tuning
# Dynamic resource allocation based on load
class ResourceManager:
def __init__(self):
self.profiles = {
"minimal": {
"workers": 2,
"memory_gb": 4,
"cpu_cores": 2,
"gpu": False
},
"standard": {
"workers": 4,
"memory_gb": 16,
"cpu_cores": 8,
"gpu": False
},
"performance": {
"workers": 8,
"memory_gb": 32,
"cpu_cores": 16,
"gpu": True,
"gpu_memory_gb": 8
},
"scale": {
"workers": 16,
"memory_gb": 64,
"cpu_cores": 32,
"gpu": True,
"gpu_memory_gb": 16,
"distributed": True
}
}
def auto_scale(self, metrics):
"""Automatically adjust resources based on metrics"""
if metrics["latency_p95"] > 1000:
return self.profiles["performance"]
elif metrics["qps"] > 100:
return self.profiles["scale"]
elif metrics["qps"] < 10:
return self.profiles["minimal"]
else:
return self.profiles["standard"]
Query Optimization
1. Query Processing Pipeline Tuning
# Optimize query processing
class QueryOptimizer:
def __init__(self):
self.strategies = {
"fast": {
"top_k": 5,
"rerank": False,
"expand_query": False,
"use_cache": True,
"timeout_ms": 200
},
"accurate": {
"top_k": 20,
"rerank": True,
"reranker": "cohere",
"expand_query": True,
"use_cache": False,
"timeout_ms": 2000
},
"hybrid": {
"top_k": 10,
"rerank": True,
"reranker": "cross-encoder",
"bm25_weight": 0.3,
"semantic_weight": 0.7,
"use_cache": True,
"timeout_ms": 500
}
}
def optimize_query(self, query, strategy="hybrid"):
config = self.strategies[strategy]
# Query expansion
if config.get("expand_query"):
query = self.expand_with_synonyms(query)
# Hybrid search setup
if "bm25_weight" in config:
return self.hybrid_search(
query,
bm25_weight=config["bm25_weight"],
semantic_weight=config["semantic_weight"],
top_k=config["top_k"]
)
return query
2. Retrieval Strategy Tuning
# Advanced retrieval tuning
class RetrievalTuner:
def __init__(self, pathway_index):
self.index = pathway_index
def tune_for_use_case(self, use_case):
"""Tune retrieval for specific use cases"""
configs = {
"customer_support": {
"min_relevance_score": 0.7,
"max_results": 5,
"include_metadata": ["category", "date", "author"],
"boost_recent": True,
"recency_weight": 0.2
},
"research": {
"min_relevance_score": 0.6,
"max_results": 20,
"include_metadata": ["citations", "journal", "year"],
"diversity_factor": 0.3, # Ensure diverse results
"academic_boost": True
},
"legal": {
"min_relevance_score": 0.85,
"max_results": 10,
"include_metadata": ["case_id", "jurisdiction", "date"],
"exact_match_boost": 2.0,
"precedent_weight": 0.4
}
}
config = configs.get(use_case, configs["customer_support"])
self.index.update_config(config)
return config
Scaling Strategies
1. Horizontal Scaling Configuration
# Distributed Pathway setup
class DistributedPathway:
def __init__(self, num_nodes=3):
self.config = {
"cluster": {
"nodes": num_nodes,
"replication_factor": 2,
"sharding_strategy": "consistent_hash",
"load_balancing": "round_robin"
},
"coordinator": {
"host": "pathway-coordinator",
"port": 8080,
"health_check_interval": 10
},
"workers": [
{
"id": f"worker-{i}",
"host": f"pathway-worker-{i}",
"port": 8081 + i,
"resources": {
"cpu": 4,
"memory_gb": 16,
"gpu": i == 0 # GPU on first worker
}
}
for i in range(num_nodes)
]
}
def deploy(self):
"""Deploy distributed Pathway cluster"""
return pw.cluster.deploy(
config=self.config,
orchestrator="kubernetes", # or "docker-swarm"
monitoring="prometheus"
)
2. Auto-scaling Rules
# Auto-scaling configuration
auto_scaling_rules = {
"scale_up_triggers": [
{"metric": "cpu_usage", "threshold": 80, "duration": 60},
{"metric": "memory_usage", "threshold": 85, "duration": 30},
{"metric": "queue_depth", "threshold": 1000, "duration": 10},
{"metric": "latency_p95", "threshold": 1000, "duration": 30}
],
"scale_down_triggers": [
{"metric": "cpu_usage", "threshold": 20, "duration": 300},
{"metric": "memory_usage", "threshold": 30, "duration": 300},
{"metric": "queue_depth", "threshold": 10, "duration": 300}
],
"scaling_policy": {
"min_instances": 1,
"max_instances": 10,
"scale_up_increment": 2,
"scale_down_increment": 1,
"cooldown_period": 180
}
}
Monitoring and Profiling
1. Performance Monitoring Setup
# Comprehensive monitoring configuration
monitoring_config = {
"metrics": {
"system": ["cpu", "memory", "disk", "network"],
"pathway": [
"documents_processed",
"embeddings_generated",
"queries_per_second",
"index_size",
"cache_hit_rate"
],
"quality": [
"retrieval_precision",
"generation_faithfulness",
"user_satisfaction"
]
},
"dashboards": {
"grafana": {
"url": "http://grafana:3000",
"dashboards": [
"pathway-overview",
"rag-quality-metrics",
"system-resources"
]
}
},
"alerts": {
"critical": [
{"metric": "error_rate", "threshold": 0.01},
{"metric": "latency_p99", "threshold": 2000}
],
"warning": [
{"metric": "cache_hit_rate", "threshold": 0.5},
{"metric": "memory_usage", "threshold": 0.8}
]
}
}
2. Profiling and Optimization Tools
# Profile Pathway pipeline performance
class PathwayProfiler:
def profile_pipeline(self, pipeline, sample_data):
"""Profile pipeline performance"""
import cProfile
import pstats
profiler = cProfile.Profile()
profiler.enable()
# Run pipeline with sample data
results = pipeline.process(sample_data)
profiler.disable()
stats = pstats.Stats(profiler)
# Identify bottlenecks
bottlenecks = {
"slowest_operations": stats.sort_stats('cumtime').print_stats(10),
"most_called": stats.sort_stats('calls').print_stats(10),
"memory_intensive": self.profile_memory(pipeline, sample_data)
}
return self.generate_optimization_report(bottlenecks)
def generate_optimization_report(self, bottlenecks):
"""Generate optimization recommendations"""
recommendations = []
# Analyze and recommend
if "embedding" in str(bottlenecks["slowest_operations"]):
recommendations.append("Consider batch processing or caching embeddings")
if "search" in str(bottlenecks["slowest_operations"]):
recommendations.append("Optimize index parameters or add more workers")
return {
"bottlenecks": bottlenecks,
"recommendations": recommendations,
"estimated_improvement": "20-40% with recommended changes"
}
Cost Optimization
1. Resource-Cost Trade-offs
# Cost optimization configurations
cost_optimization_profiles = {
"minimal_cost": {
"description": "Lowest cost, acceptable performance",
"embedding_model": "text-embedding-3-small",
"embedding_dimensions": 512,
"llm_model": "gpt-3.5-turbo",
"cache_everything": True,
"batch_size": 100,
"estimated_cost_per_1k_queries": "$0.50"
},
"balanced_cost": {
"description": "Good performance, reasonable cost",
"embedding_model": "text-embedding-3-small",
"embedding_dimensions": 1536,
"llm_model": "gpt-4-turbo",
"cache_strategy": "smart",
"batch_size": 50,
"estimated_cost_per_1k_queries": "$2.00"
},
"premium_performance": {
"description": "Best performance, higher cost",
"embedding_model": "text-embedding-3-large",
"embedding_dimensions": 3072,
"llm_model": "gpt-4",
"cache_strategy": "minimal",
"batch_size": 10,
"estimated_cost_per_1k_queries": "$5.00"
}
}
Tuning Decision Matrix
| Scenario | Priority | Recommended Tuning |
|---|---|---|
| High Volume, Low Latency | Speed | High-performance config, extensive caching, horizontal scaling |
| High Accuracy Required | Quality | High-accuracy index, reranking, larger models |
| Cost Sensitive | Budget | Minimal config, aggressive caching, smaller models |
| Real-time Updates | Freshness | Streaming-first, minimal caching, fast indexing |
| Large Dataset | Scale | Distributed setup, quantization, sharding |
| Multi-modal Content | Versatility | Specialized processors, hybrid indices |
Practical Tuning Workflow
Step-by-Step Tuning Process
class PathwayTuningWorkflow:
"""
Systematic approach to tuning Pathway instance
"""
def __init__(self, baseline_config):
self.baseline = baseline_config
self.experiments = []
self.best_config = baseline_config
def run_tuning_workflow(self):
"""Execute complete tuning workflow"""
# Step 1: Establish baseline
print("Step 1: Establishing baseline performance...")
baseline_metrics = self.measure_performance(self.baseline)
# Step 2: Identify bottlenecks
print("Step 2: Identifying bottlenecks...")
bottlenecks = self.identify_bottlenecks(baseline_metrics)
# Step 3: Generate tuning experiments
print("Step 3: Generating tuning experiments...")
experiments = self.generate_experiments(bottlenecks)
# Step 4: Run experiments
print("Step 4: Running experiments...")
for exp in experiments:
result = self.run_experiment(exp)
if result["improvement"] > 0:
self.best_config = exp["config"]
print(f" ✓ {exp['name']}: {result['improvement']:.1%} improvement")
else:
print(f" ✗ {exp['name']}: No improvement")
# Step 5: Validate final configuration
print("Step 5: Validating final configuration...")
self.validate_configuration(self.best_config)
return self.best_config
def identify_bottlenecks(self, metrics):
"""Identify what needs tuning"""
bottlenecks = []
if metrics["latency_p95"] > 500:
bottlenecks.append("high_latency")
if metrics["retrieval_precision"] < 0.85:
bottlenecks.append("low_precision")
if metrics["memory_usage"] > 0.8:
bottlenecks.append("high_memory")
if metrics["cost_per_query"] > 0.10:
bottlenecks.append("high_cost")
return bottlenecks
def generate_experiments(self, bottlenecks):
"""Generate targeted experiments based on bottlenecks"""
experiments = []
if "high_latency" in bottlenecks:
experiments.extend([
{
"name": "Increase cache size",
"config": {"cache_size_gb": 8}
},
{
"name": "Reduce embedding dimensions",
"config": {"embedding_dimensions": 512}
},
{
"name": "Enable GPU acceleration",
"config": {"gpu": True}
}
])
if "low_precision" in bottlenecks:
experiments.extend([
{
"name": "Enable reranking",
"config": {"rerank": True, "reranker": "cohere"}
},
{
"name": "Increase chunk overlap",
"config": {"chunk_overlap": 200}
},
{
"name": "Use larger embedding model",
"config": {"embedding_model": "text-embedding-3-large"}
}
])
return experiments
Quick Tuning Templates
# Pre-configured tuning templates for common scenarios
tuning_templates = {
"startup_mvp": {
"description": "Minimal viable configuration for startups",
"config": {
"workers": 2,
"memory_gb": 4,
"embedding_model": "text-embedding-3-small",
"embedding_dimensions": 512,
"chunk_size": 512,
"cache_strategy": "aggressive",
"rerank": False
},
"expected_performance": {
"latency_p95": "300ms",
"precision": "0.75",
"cost_per_1k_queries": "$0.50"
}
},
"enterprise_standard": {
"description": "Balanced configuration for enterprise deployment",
"config": {
"workers": 8,
"memory_gb": 32,
"embedding_model": "text-embedding-3-small",
"embedding_dimensions": 1536,
"chunk_size": 256,
"chunk_overlap": 128,
"cache_strategy": "smart",
"rerank": True,
"reranker": "cohere"
},
"expected_performance": {
"latency_p95": "500ms",
"precision": "0.85",
"cost_per_1k_queries": "$2.00"
}
},
"high_performance": {
"description": "Maximum performance for critical applications",
"config": {
"workers": 16,
"memory_gb": 64,
"gpu": True,
"embedding_model": "text-embedding-3-large",
"embedding_dimensions": 3072,
"chunk_size": 256,
"chunk_overlap": 200,
"cache_strategy": "minimal",
"rerank": True,
"reranker": "cross-encoder",
"distributed": True
},
"expected_performance": {
"latency_p95": "200ms",
"precision": "0.95",
"cost_per_1k_queries": "$5.00"
}
}
}
# Apply template
def apply_tuning_template(template_name):
"""Quick start with pre-tuned configuration"""
template = tuning_templates[template_name]
print(f"Applying template: {template['description']}")
print(f"Expected performance:")
for metric, value in template['expected_performance'].items():
print(f" - {metric}: {value}")
return template['config']
Tuning Checklist
pathway_tuning_checklist:
initial_setup:
- [ ] Measure baseline performance
- [ ] Identify primary use case (QA, search, analysis)
- [ ] Define performance targets
- [ ] Set budget constraints
quick_wins:
- [ ] Enable caching if not already
- [ ] Optimize batch sizes
- [ ] Adjust chunk size based on document type
- [ ] Configure appropriate number of workers
retrieval_optimization:
- [ ] Test different embedding models
- [ ] Experiment with chunk sizes (128, 256, 512, 1024)
- [ ] Try different overlap percentages
- [ ] Evaluate hybrid search vs pure semantic
- [ ] Test reranking impact
performance_tuning:
- [ ] Profile pipeline to find bottlenecks
- [ ] Optimize index parameters
- [ ] Configure caching layers
- [ ] Consider GPU acceleration
- [ ] Evaluate distributed setup need
quality_tuning:
- [ ] Run RAGAS evaluation
- [ ] A/B test configurations
- [ ] Collect user feedback
- [ ] Iterate based on failure analysis
production_hardening:
- [ ] Set up monitoring
- [ ] Configure auto-scaling
- [ ] Implement failover
- [ ] Document final configuration
Implementation Timeline
Month 1: Foundation
- Week 1-2: Google OAuth + rclone mounting
- Week 3: Basic Pathway with file system connector
- Week 4: Search UI integration
Month 2: Enhancement
- Week 1: Add S3 connector
- Week 2: Implement hybrid search
- Week 3: Add PostgreSQL connector
- Week 4: Performance optimization
Month 3: Advanced Features
- Week 1: SharePoint integration (if licensed)
- Week 2: Kafka streaming connector
- Week 3: Multi-modal RAG
- Week 4: Agent capabilities
Key Differentiators
Our Unique Value Proposition
- True File System Access: rclone mounts + Pathway indexing
- Claude CLI Compatible: Full file system access for AI
- 350+ Connectors: Via Airbyte integration
- Real-time Everything: Streaming-first architecture
- Business Friendly: No code/low code setup
Success Metrics
Technical Metrics
- Index 10,000 documents in < 5 minutes
- Search latency < 200ms for 1M documents
- Support 50+ concurrent users
- 99.9% uptime for mounted drives
- RAG Quality Score > 0.85 (see evaluation framework below)
Business Metrics
- 80% reduction in document search time
- 60% faster employee onboarding
- 90% user adoption within 3 months
- 5x ROI within first year
- 95% query satisfaction rate (measured via feedback)
RAG Quality Evaluation Framework
Why Evaluation Matters
Before deploying Pathway RAG to production, we need to validate that it:
- Retrieves the right documents (high precision and recall)
- Generates accurate answers (factually correct, no hallucinations)
- Responds appropriately (relevant, complete, and helpful)
- Performs consistently (across different query types and domains)
Core Evaluation Metrics
1. Retrieval Quality Metrics
# Retrieval metrics configuration
retrieval_metrics = {
"context_precision": {
"description": "Signal-to-noise ratio of retrieved chunks",
"threshold_green": 0.85,
"threshold_amber": 0.70,
"threshold_red": 0.70
},
"context_recall": {
"description": "Completeness of relevant information retrieval",
"threshold_green": 0.90,
"threshold_amber": 0.75,
"threshold_red": 0.75
},
"mrr": {
"description": "Mean Reciprocal Rank of first relevant result",
"threshold_green": 0.80,
"threshold_amber": 0.60,
"threshold_red": 0.60
},
"ndcg_at_10": {
"description": "Quality of top 10 results ranking",
"threshold_green": 0.75,
"threshold_amber": 0.60,
"threshold_red": 0.60
}
}
2. Generation Quality Metrics
# Generation metrics configuration
generation_metrics = {
"faithfulness": {
"description": "Factual accuracy vs retrieved context",
"threshold_green": 0.90,
"threshold_amber": 0.75,
"threshold_red": 0.75
},
"answer_relevancy": {
"description": "How directly the answer addresses the question",
"threshold_green": 0.85,
"threshold_amber": 0.70,
"threshold_red": 0.70
},
"answer_completeness": {
"description": "Coverage of all aspects of the question",
"threshold_green": 0.80,
"threshold_amber": 0.65,
"threshold_red": 0.65
},
"hallucination_rate": {
"description": "Percentage of unsupported claims",
"threshold_green": 0.05, # Less than 5% hallucination
"threshold_amber": 0.10,
"threshold_red": 0.10
}
}
3. End-to-End Performance Metrics
# System performance metrics
performance_metrics = {
"response_latency_ms": {
"p50_threshold": 200,
"p95_threshold": 500,
"p99_threshold": 1000
},
"task_completion_rate": {
"threshold": 0.95 # 95% of queries fully answered
},
"user_satisfaction_score": {
"threshold": 4.0 # Out of 5.0
},
"system_availability": {
"threshold": 0.999 # 99.9% uptime
}
}
RAGAS Framework Integration
Installation and Setup
# Install RAGAS for automated evaluation
pip install ragas langchain pathway
# Configure RAGAS with Pathway
from ragas import evaluate
from ragas.metrics import (
context_precision,
context_recall,
faithfulness,
answer_relevancy
)
import pathway as pw
# Initialize RAGAS evaluator
def setup_ragas_evaluation():
return {
"metrics": [
context_precision,
context_recall,
faithfulness,
answer_relevancy
],
"llm": pw.xpacks.llm.OpenAIChat(
model="gpt-4",
temperature=0 # Deterministic evaluation
)
}
Automated Evaluation Pipeline
# Pathway + RAGAS evaluation pipeline
class RAGEvaluationPipeline:
def __init__(self, pathway_index, test_dataset):
self.index = pathway_index
self.test_data = test_dataset
self.ragas_config = setup_ragas_evaluation()
def evaluate_batch(self, queries):
results = []
for query in queries:
# Get RAG response
context = self.index.search(query.question)
answer = self.index.generate(query.question, context)
# Prepare for RAGAS evaluation
eval_sample = {
"question": query.question,
"answer": answer,
"contexts": context,
"ground_truth": query.expected_answer # Optional
}
# Run RAGAS evaluation
scores = evaluate(
[eval_sample],
metrics=self.ragas_config["metrics"]
)
results.append(scores)
return self.aggregate_scores(results)
def aggregate_scores(self, results):
# Calculate mean scores and determine RAG status
aggregated = {}
for metric in self.ragas_config["metrics"]:
scores = [r[metric.name] for r in results]
mean_score = sum(scores) / len(scores)
# Determine RAG status (Red/Amber/Green)
if mean_score >= retrieval_metrics[metric.name]["threshold_green"]:
status = "🟢 GREEN"
elif mean_score >= retrieval_metrics[metric.name]["threshold_amber"]:
status = "🟡 AMBER"
else:
status = "🔴 RED"
aggregated[metric.name] = {
"score": mean_score,
"status": status
}
return aggregated
Benchmark Datasets for Sasha Studio
1. Custom Business Document Benchmarks
# Create domain-specific test sets
sasha_benchmarks = {
"company_knowledge": {
"description": "Test understanding of company policies and procedures",
"size": 200,
"categories": [
"HR policies",
"Product documentation",
"Sales methodologies",
"Technical specifications"
]
},
"multi_doc_reasoning": {
"description": "Questions requiring information from multiple documents",
"size": 100,
"example": "What is the total budget for Q3 marketing across all regions?"
},
"temporal_queries": {
"description": "Time-sensitive information retrieval",
"size": 50,
"example": "What were the key decisions from last month's board meeting?"
}
}
2. Standard Benchmark Adaptation
# Adapt standard benchmarks for business context
benchmark_config = {
"hotpotqa_subset": {
"size": 500,
"focus": "Multi-hop reasoning for business documents",
"adaptation": "Replace Wikipedia with company knowledge base"
},
"ms_marco_business": {
"size": 1000,
"focus": "Single-document question answering",
"adaptation": "Business-specific queries and passages"
},
"custom_fiqa": {
"size": 300,
"focus": "Financial and analytical queries",
"adaptation": "Company financial reports and analytics"
}
}
Production Quality Gates
Deployment Readiness Checklist
# Minimum scores for production deployment
production_requirements:
mandatory:
- context_precision: >= 0.85
- faithfulness: >= 0.90
- answer_relevancy: >= 0.85
- hallucination_rate: <= 0.05
- response_latency_p95: <= 500ms
recommended:
- context_recall: >= 0.90
- answer_completeness: >= 0.80
- mrr: >= 0.80
- user_satisfaction: >= 4.0/5.0
monitoring:
- daily_evaluation_runs: true
- alert_on_degradation: true
- human_review_sample: 5% # Review 5% of queries manually
Continuous Monitoring Dashboard
# Real-time monitoring configuration
monitoring_config = {
"metrics_endpoint": "/api/rag/metrics",
"update_frequency": "5_minutes",
"visualizations": [
"time_series_quality_scores",
"retrieval_precision_heatmap",
"answer_quality_distribution",
"latency_percentiles"
],
"alerts": [
{
"metric": "faithfulness",
"condition": "< 0.85",
"severity": "critical",
"notification": "slack_and_email"
},
{
"metric": "response_latency_p99",
"condition": "> 1000",
"severity": "warning",
"notification": "slack"
}
]
}
Evaluation Best Practices
1. Test Data Management
# Structured test data organization
test_data_structure = {
"golden_qa_pairs": "test_data/golden_qa.json",
"edge_cases": "test_data/edge_cases.json",
"adversarial": "test_data/adversarial.json",
"multilingual": "test_data/multilingual.json",
"update_frequency": "weekly",
"version_control": "git",
"human_validation": "required"
}
2. A/B Testing Framework
# Compare different RAG configurations
ab_test_config = {
"variant_a": {
"name": "baseline",
"chunk_size": 512,
"overlap": 50,
"embedding_model": "text-embedding-3-small",
"reranker": "none"
},
"variant_b": {
"name": "optimized",
"chunk_size": 256,
"overlap": 100,
"embedding_model": "text-embedding-3-large",
"reranker": "cohere"
},
"traffic_split": "50/50",
"minimum_sample_size": 1000,
"success_metric": "answer_relevancy"
}
3. Failure Analysis
# Analyze and categorize failures
failure_categories = {
"retrieval_failures": {
"no_relevant_docs": "Query outside knowledge base",
"wrong_docs": "Semantic similarity mismatch",
"partial_retrieval": "Missing critical context"
},
"generation_failures": {
"hallucination": "Claims not supported by context",
"incomplete": "Partial answer provided",
"irrelevant": "Answer doesn't address question"
},
"system_failures": {
"timeout": "Response time exceeded",
"error": "Processing exception",
"rate_limit": "API quota exceeded"
}
}
Implementation Timeline with Evaluation
Updated Phase 1: Google Drive MVP + Evaluation (Month 1)
- Week 1-2: Google OAuth + rclone mounting
- Week 3: Basic Pathway indexing + RAGAS setup
- Week 4: Search UI + Initial evaluation baseline
Updated Phase 2: Multi-Source + Quality Gates (Month 2)
- Week 1: Add S3 connector + Retrieval metrics
- Week 2: Hybrid search + Generation metrics
- Week 3: PostgreSQL connector + Custom benchmarks
- Week 4: Performance optimization + Production readiness assessment
Cost Considerations
Evaluation Infrastructure Costs
evaluation_costs:
llm_evaluation:
ragas_gpt4: "$0.03 per evaluation"
daily_automated_tests: "$30/day (1000 queries)"
monthly_estimate: "$900"
human_evaluation:
review_rate: "100 queries/day"
cost_per_query: "$0.50"
monthly_estimate: "$1,500"
infrastructure:
monitoring_tools: "$200/month"
storage_test_data: "$50/month"
compute_evaluation: "$100/month"
total_monthly: "$2,750"
roi_justification: "Prevents customer churn worth $50K+/month"
Troubleshooting Low RAG Scores
Diagnosis Decision Tree
Common Issues and Solutions
1. Low Context Precision (< 0.85)
Symptoms: Retrieved documents contain irrelevant information
Solutions:
# Solution 1: Implement reranking
from pathway import rerankers
reranker = rerankers.CohereReranker(
model="rerank-english-v3.0",
top_k=5
)
# Solution 2: Optimize chunk configuration
chunk_config = {
"size": 256, # Smaller chunks for precision
"overlap": 128, # 50% overlap
"method": "semantic" # Use semantic chunking
}
# Solution 3: Use hybrid search
hybrid_config = {
"bm25_weight": 0.3,
"semantic_weight": 0.7,
"minimum_score": 0.75
}
2. Low Faithfulness (< 0.90)
Symptoms: Generated answers contain hallucinations
Solutions:
# Solution 1: Strict prompt engineering
system_prompt = """
You are a factual assistant. ONLY use information from the provided context.
If the context doesn't contain the answer, say "I don't have that information."
Never make assumptions or add information not explicitly stated in the context.
"""
# Solution 2: Add citation requirements
generation_config = {
"require_citations": True,
"max_claims_without_citation": 0,
"citation_format": "[doc_id:chunk_id]"
}
# Solution 3: Implement fact-checking layer
def validate_claims(answer, context):
claims = extract_claims(answer)
for claim in claims:
if not is_supported_by_context(claim, context):
return False, f"Unsupported claim: {claim}"
return True, "All claims validated"
3. Low Answer Relevancy (< 0.85)
Symptoms: Answers are correct but don't directly address the question
Solutions:
# Solution 1: Query understanding enhancement
def enhance_query(original_query):
# Add intent classification
intent = classify_intent(original_query)
# Expand with synonyms
expanded = expand_with_synonyms(original_query)
# Add metadata filters
filters = extract_filters(original_query)
return {
"original": original_query,
"intent": intent,
"expanded": expanded,
"filters": filters
}
# Solution 2: Answer validation loop
def validate_answer_relevance(question, answer):
# Generate reverse question from answer
reverse_question = generate_question_from_answer(answer)
# Calculate similarity
similarity = calculate_similarity(question, reverse_question)
if similarity < 0.85:
# Regenerate with more specific prompt
return regenerate_with_focus(question, answer)
return answer
4. High Response Latency (> 500ms)
Symptoms: Slow query responses affecting user experience
Solutions:
# Solution 1: Implement caching
cache_config = {
"type": "redis",
"ttl": 3600, # 1 hour
"max_size": "10GB",
"similarity_threshold": 0.95 # Cache near-duplicate queries
}
# Solution 2: Optimize index structure
index_optimization = {
"use_hierarchical_index": True,
"enable_gpu_acceleration": True,
"batch_size": 32,
"prefetch_neighbors": 10
}
# Solution 3: Async processing
async def process_query_async(query):
# Parallel retrieval from multiple sources
tasks = [
retrieve_from_vector_db(query),
retrieve_from_keyword_index(query),
retrieve_from_cache(query)
]
results = await asyncio.gather(*tasks)
return merge_results(results)
Performance Tuning Checklist
retrieval_tuning:
embedding_model:
- [ ] Test different models (OpenAI, Cohere, local)
- [ ] Fine-tune on domain data if needed
- [ ] Optimize model size vs accuracy trade-off
chunking_strategy:
- [ ] Experiment with chunk sizes (128, 256, 512, 1024)
- [ ] Test overlap percentages (0%, 25%, 50%)
- [ ] Try semantic vs fixed-size chunking
index_optimization:
- [ ] Choose appropriate index type (HNSW, IVF, LSH)
- [ ] Tune index parameters (ef_construction, M)
- [ ] Consider quantization for large datasets
generation_tuning:
prompt_engineering:
- [ ] Create domain-specific prompts
- [ ] Add few-shot examples
- [ ] Implement chain-of-thought reasoning
model_selection:
- [ ] Compare GPT-4 vs GPT-3.5 vs Claude
- [ ] Test specialized models for your domain
- [ ] Consider cost vs quality trade-offs
post_processing:
- [ ] Add answer validation
- [ ] Implement citation extraction
- [ ] Create feedback loops
Evaluation-Driven Development Workflow
# Continuous improvement pipeline
class EvaluationDrivenDevelopment:
def __init__(self):
self.baseline_scores = {}
self.experiments = []
def establish_baseline(self):
"""Run initial evaluation to set baseline"""
self.baseline_scores = run_full_evaluation()
log_baseline(self.baseline_scores)
def test_improvement(self, change_description, config_changes):
"""Test a specific improvement"""
# Apply configuration changes
apply_config(config_changes)
# Run evaluation
new_scores = run_full_evaluation()
# Compare with baseline
improvement = calculate_improvement(
self.baseline_scores,
new_scores
)
# Decision logic
if improvement > 0.05: # 5% improvement threshold
self.baseline_scores = new_scores
commit_changes(change_description, config_changes)
return "ACCEPTED"
else:
rollback_changes()
return "REJECTED"
def run_experiments(self):
"""Run A/B tests on different configurations"""
experiments = [
("Smaller chunks", {"chunk_size": 128}),
("Reranking", {"use_reranker": True}),
("Hybrid search", {"search_type": "hybrid"}),
("GPT-4", {"llm_model": "gpt-4"})
]
for name, config in experiments:
result = self.test_improvement(name, config)
self.experiments.append({
"name": name,
"config": config,
"result": result
})
return self.experiments
Expected RAG Performance by Use Case
| Use Case | Context Precision | Faithfulness | Answer Relevancy | Acceptable Latency |
|---|---|---|---|---|
| FAQ Bot | 0.80+ | 0.95+ | 0.90+ | < 200ms |
| Technical Documentation | 0.85+ | 0.90+ | 0.85+ | < 500ms |
| Legal/Compliance | 0.90+ | 0.95+ | 0.90+ | < 1000ms |
| Customer Support | 0.75+ | 0.85+ | 0.80+ | < 300ms |
| Research Assistant | 0.85+ | 0.90+ | 0.80+ | < 2000ms |
| Financial Analysis | 0.90+ | 0.95+ | 0.85+ | < 1500ms |
🚦 Implementation Phases
Phase 1: Google Drive MVP (Month 1)
Google OAuth
rclone mounting
Basic Pathway indexing
Simple search UI
Phase 2: Multi-Source (Month 2)
S3 integration
Database connectors
Hybrid search
Performance tuning
Phase 3: Enterprise Features (Month 3)
SharePoint (licensed)
Streaming sources
Multi-modal RAG
Advanced analytics
Phase 4: AI Agents (Quarter 2)
Agent framework
Custom tools
Workflow automation
Knowledge graphs
Next Steps
- Week 1: Set up Google Cloud project and OAuth
- Week 2: Implement rclone mounting
- Week 3: Deploy basic Pathway pipeline
- Week 4: Create search UI
Is Our RAG Good Enough? Production Readiness Assessment
Quick Decision Framework
def is_rag_production_ready(evaluation_scores):
"""
Determine if RAG system meets production standards
Returns: (ready: bool, issues: list, recommendations: list)
"""
# Critical metrics that MUST pass
critical_metrics = {
"faithfulness": 0.90, # No hallucinations
"context_precision": 0.85, # High-quality retrieval
"response_latency_p95": 500, # User experience
"system_availability": 0.999 # Reliability
}
# Important metrics that SHOULD pass
important_metrics = {
"answer_relevancy": 0.85,
"context_recall": 0.90,
"user_satisfaction": 4.0
}
issues = []
recommendations = []
# Check critical metrics
for metric, threshold in critical_metrics.items():
if evaluation_scores[metric] < threshold:
issues.append(f"CRITICAL: {metric} = {evaluation_scores[metric]} (needs >= {threshold})")
return False, issues, ["Fix critical issues before deployment"]
# Check important metrics
for metric, threshold in important_metrics.items():
if evaluation_scores[metric] < threshold:
recommendations.append(f"IMPROVE: {metric} = {evaluation_scores[metric]} (target >= {threshold})")
# System is production ready but may need improvements
return True, issues, recommendations
Production Readiness Levels
| Level | Description | Criteria | Suitable For |
|---|---|---|---|
| 🔴 Not Ready | Major issues, needs significant work | Any critical metric failing | Development only |
| 🟡 Beta Ready | Functional but needs improvement | All critical metrics pass, some important metrics below target | Internal testing, pilot users |
| 🟢 Production Ready | Meets all requirements | All metrics meet thresholds | Full production deployment |
| Excellent | Exceeds expectations | All metrics > 10% above thresholds | Mission-critical applications |
Go/No-Go Checklist
production_checklist:
# MUST HAVE (Go/No-Go)
quality_gates:
✓ Faithfulness >= 0.90
✓ No systematic hallucinations
✓ Response time < 500ms (p95)
✓ Handles edge cases gracefully
✓ Passes security review
# SHOULD HAVE (Can deploy with plan to improve)
performance_targets:
○ Context precision >= 0.85
○ Answer relevancy >= 0.85
○ User satisfaction >= 4.0/5.0
○ Cost per query < $0.10
# NICE TO HAVE (Future enhancements)
advanced_features:
○ Multi-modal support
○ Real-time learning
○ Custom fine-tuning
○ Advanced analytics
The Bottom Line: When to Deploy
Deploy to Production When:
- Faithfulness > 0.90 - Users can trust the answers
- Latency < 500ms - User experience is smooth
- Availability > 99.9% - System is reliable
- Business value exceeds costs - Positive ROI
Consider Beta/Pilot When:
- Core metrics pass but need optimization
- Limited user group can provide feedback
- You have resources to iterate quickly
Keep in Development When:
- Hallucination rate > 10%
- Retrieval precision < 70%
- Response time > 2 seconds
- System crashes regularly
🎊 Vision Statement
By combining rclone's file system mounting with Pathway's comprehensive data integration platform, Sasha Studio becomes the universal knowledge hub that can:
- Connect to ANY data source (350+ connectors)
- Process ANY file format (built-in parsers)
- Work with ANY LLM (all major providers)
- Update in REAL-TIME (streaming architecture)
- Scale to ANY size (distributed processing)
- Measure and guarantee quality (comprehensive evaluation framework)
This positions Sasha Studio as the most connected, most intelligent, and most accessible knowledge management platform available - with the evaluation framework to prove it works.
Result: Complete implementation plan with comprehensive RAG evaluation framework. The system now includes clear metrics, thresholds, and troubleshooting guides to determine if Pathway RAG is production-ready for Sasha Studio.