Sasha Studio Implementation Guide
Generated: 2025-01-03 UTC
Updated: 2025-01-03 UTC
Purpose: Complete implementation blueprint for Sasha Studio AI Knowledge Management Platform
Target Users: Development team, project stakeholders, technical architects
Status: Implementation Ready - v2.0 with LLxprt Integration
Executive Summary
Transform organizational knowledge into intelligent, actionable insights through a web-based AI platform that leverages LLxprt Code CLI for unified multi-model support, enterprise security, intelligent guide management, automated publishing, and complete operational visibility. Sasha Studio provides a business-friendly interface for AI-powered research, analysis, and knowledge sharing with comprehensive monitoring and compliance capabilities.
Key Value Propositions
| Feature | Business Value | Technical Innovation |
|---|---|---|
| Web-Based AI Interface | No technical knowledge required | LLxprt unified multi-model support |
| Dynamic LLM Routing | Cost optimization & security | Claude, OpenAI, and local models via single interface |
| Guide Intelligence | Consistent quality outputs | Context-aware methodology selection |
| One-Click Publishing | Instant stakeholder sharing | Integrated doc-builder pipeline |
| Enterprise Security | Data sovereignty & compliance | Local models + comprehensive audit trails |
| Operational Visibility | Real-time monitoring & insights | Built-in dashboards & SIEM integration |
Success Metrics
- Time to First Value: < 5 minutes
- Task Success Rate: > 90%
- Output Quality Consistency: > 95%
- Cost Reduction: 60-80% vs traditional methods
- User Satisfaction: > 4.5/5 stars
- System Uptime: > 99.9%
- Audit Compliance: 100%
System Architecture
Single Container Architecture with LLxprt Integration
:3000] B[Admin Dashboard
:3000/admin] C[Operational Dashboards
:3000/monitor] end subgraph "Application Services" D[Sasha Backend API
:8000] E[LLxprt Code CLI
:9090] F[Doc Builder
:8080] G[Guide Engine] end subgraph "Data Services" H[PostgreSQL
:5432] I[Redis Cache
:6379] J[File Storage
/data] end subgraph "Monitoring Stack" K[Prometheus
:9091] L[Grafana
:3001] M[Loki Logs] end subgraph "Process Management" N[Supervisord] O[Nginx Proxy
:80] end end subgraph "External Services" P[Claude API] Q[OpenAI API] R[Google Drive] end D --> E E --> P E --> Q E --> J D --> G D --> K O --> A O --> D N --> D N --> E N --> H style A fill:#e3f2fd,stroke:#1976d2 style E fill:#f3e5f5,stroke:#7b1fa2 style K fill:#e8f5e9,stroke:#388e3c style H fill:#fff3e0,stroke:#f57c00
LLxprt Code CLI Integration Flow
Technology Stack
| Layer | Technology | Purpose |
|---|---|---|
| Frontend | React 18 + TypeScript + Vite | Modern, fast UI development |
| UI Components | shadcn/ui + Radix UI | Accessible, customizable components |
| Styling | Tailwind CSS | Utility-first responsive design |
| Backend | Node.js + Express + TypeScript | Scalable API services |
| LLM Interface | LLxprt Code CLI | Unified multi-model LLM support |
| Database | PostgreSQL 15 | Structured data storage |
| Cache | Redis 7 | Performance optimization |
| File Storage | Local FS / Google Drive / GCS | Flexible file management |
| AI Models | Claude, OpenAI, Llama (via LLxprt) | Multi-provider AI support |
| Monitoring | Prometheus + Grafana + Loki | Metrics, dashboards, and logs |
| Process Manager | Supervisord | Service orchestration in container |
| Proxy | Nginx | Reverse proxy and static serving |
| Containerization | Single Docker Container | Simplified deployment |
| Cloud Platform | Google Cloud Platform | Production hosting |
Core Features Implementation
Web-Based Claude Interface
Chat Interface Architecture
Key Features
1. Real-Time Streaming
// WebSocket streaming implementation
class ChatStreamHandler {
async streamResponse(
message: string,
context: ChatContext
): AsyncGenerator<ChatToken> {
const model = await this.selectModel(context);
const stream = await model.generate({
messages: context.history.concat({ role: 'user', content: message }),
stream: true,
temperature: 0.7,
max_tokens: 4000
});
for await (const chunk of stream) {
yield {
token: chunk.text,
metadata: {
model: model.id,
timestamp: Date.now()
}
};
}
}
}
2. Business Safety Rails
- Command whitelisting
- File operation restrictions
- Automatic backups before modifications
- Rate limiting per user/role
- Content filtering for PII/secrets
3. File Context Management
- Drag & drop file upload
- Automatic file type detection
- Context window optimization
- Cross-file relationship mapping
LLM Routing & OpenRouter Integration
Dynamic Model Selection
interface ModelRoutingConfig {
providers: {
anthropic: {
models: ['claude-3-opus', 'claude-3-sonnet'];
apiKey: string;
};
openrouter: {
endpoint: 'https://openrouter.ai/api/v1';
apiKey: string;
availableModels: ModelInfo[];
};
local: {
ollama: {
endpoint: 'http://localhost:11434';
models: ['llama3:70b', 'mixtral:8x7b'];
};
};
};
routingRules: RoutingRule[];
fallbackChain: string[];
}
Model Selection UI Component
// Model selector component with improved spacing
export function ModelSelector({ currentModel, onSelect }) {
return (
<Popover>
<PopoverTrigger asChild>
<Button variant="outline" className="min-w-[200px]">
<Bot className="h-4 w-4 mr-2" />
<span className="flex-1 text-left">{currentModel.name}</span>
<ChevronDown className="h-4 w-4 ml-2" />
</Button>
</PopoverTrigger>
<PopoverContent className="w-[420px] p-3">
<div className="space-y-2">
<div className="text-sm font-medium text-muted-foreground px-2 py-1">
Select AI Model
</div>
{/* Cloud Models Section */}
<div className="space-y-1">
<div className="text-xs font-medium text-muted-foreground px-2 py-1">
Cloud Models
</div>
<ModelOption
model={{
id: 'claude-3-opus',
name: 'Claude 3 Opus',
provider: 'Anthropic',
description: 'Best for complex analysis and reasoning',
badge: 'Cloud',
pricing: '$15/1M tokens',
icon: 'π£'
}}
onSelect={onSelect}
/>
<ModelOption
model={{
id: 'gpt-4-turbo',
name: 'GPT-4 Turbo',
provider: 'OpenAI',
description: 'Versatile and fast responses',
badge: 'Cloud',
pricing: '$10/1M tokens',
icon: 'π’'
}}
onSelect={onSelect}
/>
</div>
{/* Local Models Section */}
<div className="space-y-1 pt-2 border-t">
<div className="text-xs font-medium text-muted-foreground px-2 py-1">
Local Models
</div>
<ModelOption
model={{
id: 'llama-3-70b',
name: 'Llama 3 70B',
provider: 'Meta',
description: 'Secure on-premise processing',
badge: 'Local',
pricing: 'Free',
icon: 'π ',
requiresGPU: true
}}
onSelect={onSelect}
/>
<ModelOption
model={{
id: 'mistral-7b',
name: 'Mistral 7B',
provider: 'Mistral AI',
description: 'Fast and efficient',
badge: 'Local',
pricing: 'Free',
icon: 'π΅'
}}
onSelect={onSelect}
/>
</div>
</div>
</PopoverContent>
</Popover>
);
}
// Individual model option component
function ModelOption({ model, onSelect }) {
return (
<button
className="w-full flex items-start gap-3 p-3 rounded-lg hover:bg-muted/50 transition-colors text-left"
onClick={() => onSelect(model)}
>
{/* Model Icon */}
<div className="text-2xl">{model.icon}</div>
{/* Model Info */}
<div className="flex-1 min-w-0">
<div className="flex items-center gap-2 mb-1">
<span className="font-medium">{model.name}</span>
<Badge variant={model.badge === 'Local' ? 'secondary' : 'default'} className="text-xs">
{model.badge}
</Badge>
{model.requiresGPU && (
<Badge variant="outline" className="text-xs">
GPU
</Badge>
)}
</div>
<p className="text-sm text-muted-foreground line-clamp-2">
{model.description}
</p>
<div className="flex items-center gap-3 mt-1 text-xs text-muted-foreground">
<span>{model.provider}</span>
<span>β’</span>
<span className="font-medium">{model.pricing}</span>
</div>
</div>
</button>
);
}
Guide Intelligence System
Knowledge Library Architecture
Guide Management Structure
/guides/
βββ knowledge-management/
β βββ _meta.yaml # Category metadata
β βββ beautiful-documentation-design.md # Visual design standards
β βββ excel-to-markdown-conversion.md # Data transformation
β βββ web-publishing-guide.md # Publishing workflow
βββ research/
β βββ competitor-analysis-framework.md # Market research
β βββ digital-investigation-guide.md # Online research
β βββ problem-validation-guide.md # Problem discovery
βββ development/
β βββ ai-standards.md # AI implementation
β βββ coding-standards.md # Code quality
β βββ docker-setup-guide.md # Infrastructure
βββ _index/
βββ guide-index.json # Searchable index
βββ usage-analytics.json # Performance metrics
Publishing Pipeline
Doc-Builder Integration Flow
Publishing Configuration
interface PublishingConfig {
workspace: {
structure: {
'docs/': 'Markdown content',
'doc-builder.config.js': 'Site configuration',
'_images/': 'Assets and media'
}
};
docBuilder: {
siteName: string;
features: {
authentication: boolean;
darkMode: boolean;
mermaid: boolean;
search: boolean;
};
deployment: {
platform: 'vercel' | 'netlify' | 'custom';
customDomain?: string;
};
};
accessControl: {
visibility: 'public' | 'private' | 'password';
allowedEmails?: string[];
expirationDate?: Date;
};
}
UI/UX Implementation
Design System Architecture
Component Hierarchy
Design Tokens
:root {
/* Colors */
--primary: #2563eb;
--primary-foreground: #ffffff;
--secondary: #7c3aed;
--secondary-foreground: #ffffff;
--success: #10b981;
--warning: #f59e0b;
--error: #ef4444;
/* Typography */
--font-sans: 'Inter', -apple-system, system-ui, sans-serif;
--font-mono: 'JetBrains Mono', monospace;
/* Spacing */
--space-1: 0.25rem;
--space-2: 0.5rem;
--space-3: 0.75rem;
--space-4: 1rem;
--space-6: 1.5rem;
--space-8: 2rem;
/* Radii */
--radius-sm: 0.25rem;
--radius-md: 0.5rem;
--radius-lg: 0.75rem;
--radius-full: 9999px;
}
Onboarding Experience
Interactive Tour Flow
Onboarding Components
interface OnboardingStep {
id: string;
title: string;
description: string;
target: string; // CSS selector
action?: {
type: 'next' | 'highlight' | 'interact';
delay?: number;
};
}
const onboardingSteps: OnboardingStep[] = [
{
id: 'welcome',
title: 'Welcome to Sasha Studio! π',
description: 'Your AI-powered knowledge assistant',
target: 'body',
action: { type: 'next', delay: 3000 }
},
{
id: 'chat',
title: 'Chat with Sasha',
description: 'Type questions or upload files to analyze',
target: '.chat-input',
action: { type: 'highlight' }
}
// ... more steps
];
Operational Visibility & Monitoring
Note: For V1 deployment, we use a simplified monitoring dashboard instead of the full Prometheus/Grafana stack. See the Local LLM Integration Guide for the lightweight monitoring implementation.
Real-Time Dashboard Architecture
Key Monitoring Features
1. Executive Dashboard
- Active sessions in real-time
- Task completion metrics
- System health indicators
- Resource utilization graphs
- Cost tracking by model usage
2. Operational Metrics
interface OperationalMetrics {
sessions: {
active: number;
total24h: number;
avgDuration: number;
byUser: Map<string, SessionMetrics>;
};
tasks: {
inProgress: TaskProgress[];
completed24h: number;
successRate: number;
avgResponseTime: number;
};
mounts: {
health: MountHealth[];
syncStatus: SyncOperation[];
lastSync: Map<string, Date>;
};
models: {
usage: Map<string, ModelUsage>;
costs: Map<string, number>;
performance: Map<string, PerformanceMetrics>;
};
}
3. Mount Health Monitoring
- Real-time connection status
- Sync operation progress
- File change detection
- Error tracking and alerts
- Bandwidth utilization
4. Audit & Compliance
- Comprehensive action logging
- User attribution for all operations
- Data access tracking
- Export capabilities for SIEM
- Automated compliance reports
SIEM Integration
siem_integration:
supported_platforms:
- splunk:
protocol: HEC
format: JSON
endpoint: ${SPLUNK_HEC_URL}
- elastic:
protocol: Beats
format: ECS
endpoint: ${ELASTIC_URL}
- syslog:
protocol: RFC5424
format: CEF
endpoint: ${SYSLOG_SERVER}
event_types:
- authentication
- data_access
- model_usage
- configuration_change
- security_alert
Grafana Dashboard Configuration
dashboards:
- name: "Sasha Studio Overview"
refresh: "5s"
panels:
- title: "Active Sessions"
type: stat
query: "sasha_active_sessions_total"
- title: "Task Success Rate"
type: gauge
query: "rate(sasha_task_success[5m])"
- title: "Model Usage Distribution"
type: piechart
query: "sum by (model) (sasha_model_requests_total)"
- title: "Response Time Trends"
type: graph
query: "histogram_quantile(0.95, sasha_response_duration)"
- title: "Mount Health Status"
type: table
query: "sasha_mount_health_status"
Security Architecture
Important: See the V1 Security Essentials Guide for comprehensive security hardening procedures including container security, secrets management, and monitoring.
Authentication & Authorization
Complete Implementation Guide: See JWT Authentication Flow Guide for comprehensive implementation details including Supabase Auth integration and licensing model.
Supabase Auth Integration with Licensing Model
Sasha Studio uses Supabase Auth as the primary authentication service with integrated subscription licensing for feature access control.
Subscription Tiers & Feature Matrix
| Feature | Free | Starter | Pro | Enterprise |
|---|---|---|---|---|
| AI Queries/Month | 100 | 1,000 | 10,000 | Unlimited |
| File Storage | 100MB | 1GB | 10GB | Unlimited |
| Team Members | 1 | 5 | 25 | Unlimited |
| Workspaces | 1 | 3 | 10 | Unlimited |
| AI Models | Basic | Claude-3 Haiku | All Models | All + Custom |
| Guide Library | Public | Standard | Advanced | Custom |
| Publishing | ||||
| Priority Support | ||||
| API Access |
RBAC Matrix
| Role | Chat | Upload | Guides | Publish | Admin | Analytics |
|---|---|---|---|---|---|---|
| Viewer | ||||||
| User | ||||||
| Power User | ||||||
| Admin |
Data Protection
Encryption Strategy
interface SecurityConfig {
encryption: {
atRest: {
algorithm: 'AES-256-GCM';
keyRotation: '90 days';
};
inTransit: {
protocol: 'TLS 1.3';
cipherSuites: string[];
};
};
piiHandling: {
detection: boolean;
masking: boolean;
retention: '365 days';
};
auditLogging: {
events: ['auth', 'data_access', 'admin_actions'];
retention: '2 years';
storage: 'immutable';
};
}
Deployment Architecture
Single Container Deployment
Simplified Architecture
Single Container Dockerfile
FROM ubuntu:22.04
# Install all required services
RUN apt-get update && apt-get install -y \
nodejs npm \
postgresql-14 \
redis-server \
nginx \
supervisor \
prometheus \
grafana \
curl git \
&& rm -rf /var/lib/apt/lists/*
# Install LLxprt CLI
COPY --from=llxprt-builder /build/llxprt /usr/local/bin/
# Copy application code
COPY frontend/dist /app/frontend
COPY backend /app/backend
COPY doc-builder /app/doc-builder
COPY guides /app/guides
# Copy configuration files
COPY docker/nginx.conf /etc/nginx/nginx.conf
COPY docker/supervisord.conf /etc/supervisor/conf.d/
COPY docker/prometheus.yml /etc/prometheus/
COPY docker/init.sh /init.sh
# Create directories
RUN mkdir -p /data /config /models /logs
# Expose only main port
EXPOSE 80
# Health check
HEALTHCHECK --interval=30s --timeout=10s \
CMD curl -f http://localhost/health || exit 1
# Start all services
CMD ["/init.sh"]
Docker Compose (Single Container)
version: '3.8'
services:
sasha:
build: .
image: sasha/studio:latest
container_name: sasha-studio
ports:
- "80:80" # Main web interface
- "3001:3001" # Grafana dashboards (optional)
volumes:
- sasha-data:/data
- sasha-config:/config
- sasha-models:/models
- sasha-logs:/logs
- ./guides:/app/guides # Mount local guides
environment:
# LLM Configuration
- ANTHROPIC_API_KEY=${ANTHROPIC_API_KEY}
- OPENAI_API_KEY=${OPENAI_API_KEY}
- ENABLE_LOCAL_MODELS=true
# Admin Configuration
- ADMIN_EMAIL=admin@example.com
- INITIAL_PASSWORD=changeme
# Monitoring Configuration
- ENABLE_MONITORING=true
- SIEM_ENDPOINT=${SIEM_ENDPOINT}
restart: unless-stopped
volumes:
sasha-data:
sasha-config:
sasha-models:
sasha-logs:
GCP Production Architecture
Cloud Infrastructure
Deployment Configuration
# cloudbuild.yaml
steps:
# Build and test
- name: 'node:20'
entrypoint: 'npm'
args: ['ci']
- name: 'node:20'
entrypoint: 'npm'
args: ['test']
# Build Docker images
- name: 'gcr.io/cloud-builders/docker'
args: ['build', '-t', 'gcr.io/$PROJECT_ID/sasha-api', './backend']
- name: 'gcr.io/cloud-builders/docker'
args: ['build', '-t', 'gcr.io/$PROJECT_ID/sasha-web', './frontend']
# Push to Container Registry
- name: 'gcr.io/cloud-builders/docker'
args: ['push', 'gcr.io/$PROJECT_ID/sasha-api']
- name: 'gcr.io/cloud-builders/docker'
args: ['push', 'gcr.io/$PROJECT_ID/sasha-web']
# Deploy to Cloud Run
- name: 'gcr.io/google.com/cloudsdktool/cloud-sdk'
entrypoint: 'gcloud'
args:
- 'run'
- 'deploy'
- 'sasha-api'
- '--image=gcr.io/$PROJECT_ID/sasha-api'
- '--region=us-central1'
- '--platform=managed'
- '--memory=4Gi'
- '--cpu=4'
- '--min-instances=2'
- '--max-instances=100'
Implementation Roadmap
Phase 0: Documentation & Planning
Duration: 1 week
Status: Complete
- Requirements analysis
- Architecture design
- Technology selection
- Resource planning
- Documentation creation
Phase 1: Core Infrastructure
Duration: 2 weeks
Sprint 1: Foundation Setup
- Docker environment setup
- Database schema design
- API framework initialization
- Authentication system
Sprint 2: Core Services
- WebSocket server
- File management service
- Basic LLM integration
- Redis caching
Phase 2: Feature Development
Duration: 3 weeks
Sprint 3: Chat Interface
- React UI setup
- Chat component development
- File upload system
- Streaming implementation
Sprint 4: Intelligence Layer
- Guide library setup
- Context analyzer
- LLM router
- OpenRouter integration
Sprint 5: Publishing & Admin
- Doc-builder integration
- Publishing pipeline
- Admin dashboard
- User management
Phase 3: Integration & Testing
Duration: 2 weeks
Sprint 6: Integration
- End-to-end testing
- Performance optimization
- Security audit
- Load testing
Sprint 7: Polish
- UI/UX refinements
- Onboarding flow
- Documentation updates
- Bug fixes
Phase 4: Deployment
Duration: 1 week
Sprint 8: Production Launch
- GCP project setup
- CI/CD pipeline
- Production deployment
- Monitoring setup
- Launch preparation
Technical Specifications
API Endpoints
Core Chat API
| Endpoint | Method | Purpose | Auth |
|---|---|---|---|
/api/chat/sessions |
POST | Create chat session | JWT |
/api/chat/messages |
POST | Send message | JWT |
/api/chat/messages/:id |
GET | Get message | JWT |
/api/chat/stream |
WS | Stream responses | JWT |
File Management API
| Endpoint | Method | Purpose | Auth |
|---|---|---|---|
/api/files/upload |
POST | Upload file | JWT |
/api/files/:id |
GET | Get file | JWT |
/api/files/:id/analyze |
POST | Analyze file | JWT |
/api/workspaces |
GET | List workspaces | JWT |
Publishing API
| Endpoint | Method | Purpose | Auth |
|---|---|---|---|
/api/publish/preview |
POST | Generate preview | JWT |
/api/publish/deploy |
POST | Deploy site | JWT |
/api/publish/sites |
GET | List published | JWT |
Database Schema
Environment Configuration
# .env.example
# Application
NODE_ENV=development
PORT=8000
APP_URL=http://localhost:3000
# Database
DATABASE_URL=postgresql://user:pass@localhost:5432/sasha
REDIS_URL=redis://localhost:6379
# Supabase Configuration
SUPABASE_URL=https://your-project.supabase.co
SUPABASE_ANON_KEY=your-anon-key
SUPABASE_SERVICE_ROLE_KEY=your-service-role-key
# Authentication & JWT
JWT_SECRET=your-secret-key
JWT_EXPIRES_IN=15m
REFRESH_TOKEN_EXPIRES_IN=7d
# Licensing & Subscriptions
STRIPE_SECRET_KEY=sk_test_your-stripe-key
STRIPE_WEBHOOK_SECRET=whsec_your-webhook-secret
ENABLE_USAGE_TRACKING=true
# AI/LLM
ANTHROPIC_API_KEY=your-claude-key
OPENROUTER_API_KEY=your-openrouter-key
OLLAMA_HOST=http://localhost:11434
# Storage
STORAGE_TYPE=local # or gcs
GCS_BUCKET=sasha-storage
GOOGLE_APPLICATION_CREDENTIALS=./service-account.json
# Publishing
DOC_BUILDER_URL=http://localhost:8080
VERCEL_TOKEN=your-vercel-token
# Security
ENCRYPTION_KEY=your-encryption-key
RATE_LIMIT_WINDOW=15m
RATE_LIMIT_MAX=100
V1 Security Essentials
Critical Security Measures for Production
For V1 deployment, implement these essential security measures without adding complexity:
Quick Security Checklist
- Container Security: Run as non-root user, remove unnecessary tools
- Secrets Management: Use file-based secrets, not environment variables
- Network Security: HTTPS only with security headers
- Application Security: Rate limiting, input sanitization, session security
- Data Protection: Automated backups, PII scanning, audit logging
- Monitoring: Health checks, security event logging, disk space alerts
Essential Configuration Changes
# Generate secrets
./scripts/generate-secrets.sh
# Set up automated backups (add to crontab)
0 2 * * * /app/scripts/backup.sh
# Create security audit log
mkdir -p /logs && touch /logs/security.log
Security-Enhanced Start Script
#!/bin/bash
# /init.sh - Secure initialization
# Check for required secrets
for secret in jwt_secret session_secret encryption_key database_url; do
if [ ! -f "/run/secrets/$secret" ]; then
echo "ERROR: Missing required secret: $secret"
exit 1
fi
done
# Initialize with security checks
echo "π Starting Sasha Studio with security hardening..."
# Start services with proper permissions
exec /usr/bin/supervisord -c /etc/supervisor/conf.d/supervisord.conf
Full Guide: See the comprehensive V1 Security Essentials Guide for detailed implementation instructions.
Getting Started
Prerequisites Checklist
- Docker Desktop installed (v24.0+)
- Node.js installed (v20+)
- Git configured
- VS Code with recommended extensions
- GCP Account (for production)
- API Keys:
- Anthropic (Claude)
- OpenRouter (optional)
- Google Cloud credentials
Quick Start Commands
# 1. Clone the repository
git clone https://github.com/your-org/sasha-studio.git
cd sasha-studio
# 2. Copy environment template
cp .env.example .env
# Edit .env with your configuration
# 3. Install dependencies
npm install
# 4. Start Docker services
docker-compose up -d
# 5. Run database migrations
npm run db:migrate
# 6. Seed initial data
npm run db:seed
# 7. Start development servers
npm run dev
# 8. Open in browser
# Frontend: http://localhost:3000
# API: http://localhost:8000
# Doc-Builder: http://localhost:8080
Verification Steps
Test Chat Interface
- Open http://localhost:3000
- Send a test message
- Verify streaming response
Test File Upload
- Drag a document to chat
- Verify file processing
- Check context integration
Test Publishing
- Create a simple analysis
- Click publish button
- Verify preview generation
Appendices
A. Glossary
| Term | Definition |
|---|---|
| LLM | Large Language Model - AI models like Claude or GPT |
| Guide | Methodology document that instructs AI behavior |
| Workspace | Isolated environment for a project or analysis |
| Publishing | Converting analysis to shareable website |
| Router | System that selects appropriate AI model |
| Safety Rails | Restrictions preventing harmful operations |
B. Reference Architecture
Security References
- V1 Security Essentials Guide
- Local LLM Integration Guide
- PII Scanning and Removal Guide
- OWASP Security Guidelines
- Docker Security Best Practices
C. Troubleshooting Guide
Common Issues
Docker containers won't start
# Check logs
docker-compose logs -f
# Reset volumes
docker-compose down -v
docker-compose up -d
Database connection errors
# Verify PostgreSQL is running
docker ps | grep postgres
# Test connection
psql -h localhost -U postgres -d sasha
LLM routing failures
- Verify API keys in .env
- Check rate limits
- Ensure models are available
- Review fallback configuration
Success Criteria
Performance Benchmarks
- Response Time: < 100ms first token
- Streaming Rate: > 50 tokens/second
- File Processing: < 5s for 10MB files
- Publishing Time: < 30s for standard site
Quality Metrics
- Guide Compliance: > 95%
- Output Accuracy: > 90%
- User Satisfaction: > 4.5/5
- System Uptime: > 99.9%
Business Impact
- Time Savings: 60-80% vs manual
- Cost Reduction: 70% vs consultants
- Knowledge Capture: 100% retention
- Team Productivity: 3x improvement
This implementation guide serves as the single source of truth for building Sasha Studio. For questions or clarifications, consult the project team or refer to the detailed guides in the appendices.